ATMOSPHERIC AEROSOLS:
THEIR INFLUENCES ON CLIMATE AND
WHY IT IS ESSENTIAL THAT WE
UNDERSTAND THEM

Stephen E. Schwartz
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OVERVIEW

“You have a short course... not a 20 min talk.” — BJF-P

-, Climate sensitivity — definition, importance,
past and current estimates

- | Expected increase in global mean surface

temperature and the warming discrepancy

~ Aerosol forcing and implications
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_ 1 Allowable future CO> emissions

=4 Concluding remarks — Importance



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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RADIATIVE FORCING

A change 1n a radiative flux term in Earth’s radiation
budget, AF, W m™2.

Working hypothesis:
On a global basis radiative forcings are additive and

fungible.
e This hypothesis 1s fundamental to the radiative
forcing concept.

e This hypothesis underlies much of the assessment of
climate change over the industrial period.



ATMOSPHERIC CARBON DIOXIDE IS INCREASING
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GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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CLIMATE RESPONSE

The change in global and annual mean temperature,
AT, K, resulting from a given radiative forcing.

Working hypothesis:
The change in global mean temperature is
proportional to the forcing, but independent of its
nature and spatial distribution.

AT =85 AF



CLIMATE SENSITIVITY

The change 1n global and annual mean temperature per
unit forcing, S, K/(W m—2),

S = AT/AF.

Climate sensitivity 1s not known and 1s the objective of
much current research on climate change.

Climate sensitivity 1s often expressed as the
temperature for doubled CO» concentration A7T9x.

ATr = SAFr
AFZX =37 W m-2
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CLIMATE SENSITIVITY ESTIMATES
THROUGH THE AGES

Estimates of central value and uncertainty range from major
national and international assessments

Carbon Dioxide and Climate:

A Scientific Assessment
NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979
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Despite extensive research, climate sensitivity remains highly uncertain.



EXPECTED INCREASE IN GLOBAL TEMPERATURE

Long-lived GHGs only — Dependence on climate sensitivity
Equilibrium Climate Sensitivity, K/(W m-2)
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This discrepancy holds throughout the IPCC AR4 “likely” range for
climate sensitivity.



Radiative Forcing by Tropospheric Aerosol

Land Use Changes Industrial Emissions Biomass Burning
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AEROSOL EFFECTS ON CLOUDS
AND RADIATION
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IPCC AR4 (2007) after Boucher and Haywood, 2000



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)

Long Lived
Greenhouse Gases N,0
Tropospheric , CFCSI
Aerosols =07 CHa
Cloud Albedo -
Effect . Effoct
Total Forcing
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Forcing, W m-2
Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing.



EXPECTED INCREASE IN GLOBAL TEMPERATURE

Long-lived GHGs only — Dependence on climate sensitivity
Equilibrium Climate Sensitivity, K/(W m2)
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The warming discrepancy is certainly resolved by countervailing aerosol
forcing (within the IPCC range) for virtually any value of sensitivity.



CLIMATE MODEL DETERMINATION
OF CLIMATE SENSITIVITY

Effect of uncertainty in forcing

Foe=F—-—H Climate Sensitivity S, K/(W m-2)
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Uncertainty 1n aerosol forcing allows climate models with widely differing
sensitivities to reproduce temperature increase over industrial period.



ALLOWABLE FUTURE CO2 EMISSIONS

Dependence on climate sensitivity and acceptable increase 1n
temperature relative to preindustrial

Equilibrium Climate Sensitivity, K/(W m™2)
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For AT .x =2K...
If sensitivity AT»y 1s 3 K, no more emissions.
If sensitivity AT»y 1s 2 K, ~ 30 more years of emissions at present rate.
If sensitivity AT», 1s 4.5 K, threshold is exceeded by ~30 years.
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THE PATH FORWARD

Determine aerosol forcing with high accuracy.

Multiple approaches are required:
Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.
Evaluate models by comparison with observations.
Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS

e er?sation Radiation transfer in clouds
/O : * AP ~a &~
evaporation / ew paorticle
© ° formation ©
surface ormation
chemistry ° o
scavenging ~ >@ \2adueous
o coagulation p ° chemistry
o diffusion "3
light scattering ( \ 0
and absorption o autoconversion
F(RR) activation evaporation
water o subclo
uptake | scave )
oxidation . © )
precursor emissions dry prlmary em|ss|ons
/A M gdeposition

Modified from Ghan and Schwartz, Bull. Amer. Meterol Soc., 2007



APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes

Radiation transfer in clouds
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Isomorphism of processes to computer code

Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and
incorporating these representations in global scale models.



AEROSOL OPTICAL DEPTH IN 17 MODELS
(AEROCOM)

Comparison also with surface and satellite observations
Observed
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Kinne et al., ACP, 2006
Surface measurements: AERONET network.

Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?

Are the models getting the “right” answer because the answer 1s known?
Are the satellites getting the “right” answer because the answer 1s known?



ORGANIC CONTRIBUTIONS TO TROPOSPHERIC
AEROSOL

Mass-spec determination of primary vs secondary organics
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Evolution of Organic Aerosols in the Atmosphere
J. L. Jimenez, et al. Science 326, 1525 (2009)

New analytical techniques permit identification of formation mechanisms.
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IMPORTANCE OF KNOWLEDGE OF
CLIMATE TO INFORMED
DECISION MAKING

e The lifetime of incremental atmospheric CO; 1s about
100 years.

* The expected life of a new coal-fired power plant 1s
50 to 75 years.

Actions taken today will have long-lasting effects.

Early knowledge of climate sensitivity can result in
huge averted costs.





